Submission to the Taronga tin mine project.

My main objection is that this development is that it’s being proposed as a “trial mine”. It is possible (and is my belief) that this “stage one” of the project is a Trojan horse type strategy by the proponent to avoid the expense/more rigorous approval avenue they would face getting the full size mine approved. If this is the case, this makes the “trial mine” environmental impact statement completely null and void as the full size mine will have a completely different larger impact footprint that will eclipse any of the undertakings for rehabilitation stated in this development application. I wonder how council would view a DA to build a 4 bedroom house, which first submits a “stage one” that only applies for permission one bedroom?

I would hope that the any extension to the “Trial” would require cumulative rather than doing successive assessments.

My concerns with the “Trial mine” as its proposed are:

- Offsets. The use of “offsets” to address negative environmental effects is a flawed idea, invented (by government) to enable development to proceed unencumbered by pesky things like threatened species or endangered ecological communities and in reality these offsets have no benefit for the environment. I would prefer to that the proponent just approach their environmental impacts with an attitude of only engaging in truly necessary impacts, for example this might be when engaging in the clearing of native vegetation, instead of clearing the whole proposed mine footprint in one go (because “it’s on the plan” or the machinery is available and the drivers are bored) this might be done progressively over a longer time periods...perhaps limiting the impact to a footprint that is truly necessary.

- Waste containment dams. I question the EIS’s claim that the “rejects dam” will cope with a 1:10,000 year rainfall event (4.2.4 surface water management controls) in that section it claims the reject dam has a capacity of 230 ML but in the section 2.4.3.5 Rejects Dam, there is an admission that 210 ML will be taken up by waste rock leaving 19.7 ML for actual water as the “Rejects Dam will have a surface area of 4.8ha and catchment of 6.9ha”...my calculations are:

 4.8ha + 6.9ha=11.7 ha + 100mm of rain = 11.7 mega litres X 2 = OVERFLOW ?

 200mm of rain..... one in 10,000 year event? Is this correct? (For example Glen Innes received 297.8 mm for the month of March this year) All waste containments should be designed and maintained to the 1:10000 year standard as, an acidic spill is one of the major risks to downstream water users.
4.2.4 Surface Water Management Controls

Proposed construction of Total Freeboard within waste containment facilities to satisfy a 1:10,000 year rainfall event. ATC Williams have designed the Rejects Dam with a capacity of 230ML including 9.7ML of environmental freeboard, providing sufficient storage to accommodate modelled rainfall for a 1 in 10,000 year rainfall event, and reducing the likelihood that the Rejects Dam would overflow (modelled less than 1 percent). As a further management measure, the TSF and Rejects Dam would be constructed upstream of Dam B, providing additional surge capacity in the event of a major rainfall event, and providing a source of any dilution should the Rejects Dam discharge water.

2.4.3.5 Rejects Dam
The Rejects Dam will be situated downstream and the south of the TSF. The Rejects Dam will have a total capacity of 230ML comprising (i) 210ML to accommodate rejects (328,300 tonnes); 10ML of decant for process water; and (iii) 9.7ML of environmental freeboard. The Rejects Dam will have a surface area of 4.8ha and catchment of 6.9ha. The Rejects Dam will be an engineered wall (final embankment height of 29m and totalling 78,250m³ of material) and construction will be undertaken in three stages, of which Stage 1 will consist primarily of borrowed material from the TSF and clean water diversion. Stages 2 and 3 will comprise downstream raises of the embankment as overburden/rejects material becomes available during operations. The Rejects Dam embankment would incorporate an Australian standard HDPE lining to mitigate any potential seepage. Harvestable water upstream of the Rejects Dam would be diverted around the dam and diverted to Dam B.